This work is concerned with coupling conditions for linear hyperbolic relaxation systems with multiple relaxation times. In the region with small relaxation time, an equilibrium system can be used for computational efficiency. Under the assumption that the relaxation system satisfies the structural stability condition and the interface is non-characteristic, we derive a coupling condition at the interface to couple the two systems in a domain decomposition setting. We prove the validity by the energy estimate and Laplace transform, which shows how the error of the domain decomposition method depends on the smaller relaxation time and the boundary layer effects. In addition, we propose a discontinuous Galerkin (DG) scheme for solving the interface problem with the derived coupling condition and prove the L2 stability. We validate our analysis on the linearized Carleman model and the linearized Grad's moment system and show the effectiveness of the DG scheme.
翻译:这项工作涉及线性双曲放松系统与多个放松时间的混合条件。 在休息时间小的地区,可以使用平衡系统来计算效率。假设放松系统满足结构稳定性条件,界面是非特性性的,我们在界面上得出一个结合条件,将两个系统结合到一个域分解环境中。我们通过能源估计和Laplace变异证明了两种系统的有效性,这表明域分解方法的错误取决于较小放松时间和边界层效应。此外,我们提出了一个不连续的Galerkin(DG)计划,以解决与衍生的组合条件的接口问题,并证明L2稳定性。我们验证了我们对线性Carleman模型和线性格拉德瞬时系统的分析,并展示了DG计划的有效性。