Proxy-based metric learning losses are superior to pair-based losses due to their fast convergence and low training complexity. However, existing proxy-based losses focus on learning class-discriminative features while overlooking the commonalities shared across classes which are potentially useful in describing and matching samples. Moreover, they ignore the implicit hierarchy of categories in real-world datasets, where similar subordinate classes can be grouped together. In this paper, we present a framework that leverages this implicit hierarchy by imposing a hierarchical structure on the proxies and can be used with any existing proxy-based loss. This allows our model to capture both class-discriminative features and class-shared characteristics without breaking the implicit data hierarchy. We evaluate our method on five established image retrieval datasets such as In-Shop and SOP. Results demonstrate that our hierarchical proxy-based loss framework improves the performance of existing proxy-based losses, especially on large datasets which exhibit strong hierarchical structure.


翻译:代用标准学习损失优于基于对等的损失,因为它们迅速趋同和低程度的培训复杂性。然而,现有的代用损失侧重于学习阶级差异性特征,而忽略了各阶层共有的、在描述和匹配样本方面可能有用的共同点。此外,它们忽视了真实世界数据集中隐含的类别等级,将类似的下属类别分组在一起。在本文件中,我们提出了一个框架,通过对代理人强加等级结构来利用这种隐含的等级,并可用于任何现有的代用损失。这使得我们的模型既能捕捉阶级差异性特征,又能捕捉阶级共享特征,同时又不打破隐含的数据等级。我们评估了我们关于In-Shop和SOP等五个既定图像检索数据集的方法。结果显示,我们基于等级的代用损失框架改善了现有代用损失的绩效,特别是具有强大等级结构的大型数据集的绩效。

0
下载
关闭预览

相关内容

度量学习的目的为了衡量样本之间的相近程度,而这也正是模式识别的核心问题之一。大量的机器学习方法,比如K近邻、支持向量机、径向基函数网络等分类方法以及K-means聚类方法,还有一些基于图的方法,其性能好坏都主要有样本之间的相似度量方法的选择决定。 度量学习通常的目标是使同类样本之间的距离尽可能缩小,不同类样本之间的距离尽可能放大。
专知会员服务
53+阅读 · 2021年9月3日
一文理解Ranking Loss/Margin Loss/Triplet Loss
极市平台
16+阅读 · 2020年8月10日
Cross-Modal & Metric Learning 跨模态检索专题-2
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
16+阅读 · 2018年4月2日
Arxiv
9+阅读 · 2018年3月28日
VIP会员
相关资讯
一文理解Ranking Loss/Margin Loss/Triplet Loss
极市平台
16+阅读 · 2020年8月10日
Cross-Modal & Metric Learning 跨模态检索专题-2
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
13+阅读 · 2019年11月14日
Arxiv
9+阅读 · 2019年4月19日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
5+阅读 · 2018年5月31日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
16+阅读 · 2018年4月2日
Arxiv
9+阅读 · 2018年3月28日
Top
微信扫码咨询专知VIP会员