Contact-rich manipulation involves kinematic constraints on the task motion, typically with discrete transitions between these constraints during the task. Allowing the robot to detect and reason about these contact constraints can support robust and dynamic manipulation, but how can these contact models be efficiently learned? Purely visual observations are an attractive data source, allowing passive task demonstrations with unmodified objects. Existing approaches for vision-only learning from demonstration are effective in pick-and-place applications and planar tasks. Nevertheless, accuracy/occlusions and unobserved task dynamics can limit their robustness in contact-rich manipulation. To use visual demonstrations for contact-rich robotic tasks, we consider the demonstration of pose trajectories with transitions between holonomic kinematic constraints, first clustering the trajectories into discrete contact modes, then fitting kinematic constraints per each mode. The fit constraints are then used to (i) detect contact online with force/torque measurements and (ii) plan the robot policy with respect to the active constraint. We demonstrate the approach with real experiments, on cabling and rake tasks, showing the approach gives robust manipulation through contact transitions.
翻译:接触丰富的操作涉及任务运动的运动学约束,通常在任务过程中具有离散的约束转换。允许机器人检测和推理这些接触约束可以支持强大和动态的操作,但如何有效地学习这些接触模型?纯粹的视觉观察是一种有吸引力的数据来源,允许无需修改对象进行被动任务演示。现有的基于视觉的学习演示方法在拾取放置应用和平面任务中非常有效。然而,精度/遮挡和未观察到的任务动态可能会限制它们在接触丰富操作中的鲁棒性。为了使用视觉演示进行接触丰富的机器人任务,我们考虑演示带有全向运动学约束之间的转换的姿态轨迹,首先将轨迹聚类为离散的接触模式,然后为每个模式拟合运动学约束。拟合约束随后用于(i)使用力/扭矩测量在线检测接触和(ii)针对活动约束规划机器人策略。我们通过实际实验演示了该方法,针对电缆和耙子任务,显示该方法通过接触转换提供了强大的操作。