Inspired by recent work by Christensen and Popovski on secure $2$-user product computation for finite-fields of prime-order over a quantum multiple access channel, the generalization to $K$ users and arbitrary finite fields is explored. Asymptotically optimal (capacity-achieving for large alphabet) schemes are proposed. Additionally, the capacity of modulo-$d$ ($d\geq 2$) secure $K$-sum computation is shown to be $2/K$ computations/qudit, generalizing a result of Nishimura and Kawachi beyond binary, and improving upon it for odd $K$.
翻译:暂无翻译