CSI feedback is an important problem of Massive multiple-input multiple-output (MIMO) technology because the feedback overhead is proportional to the number of sub-channels and the number of antennas, both of which scale with the size of the Massive MIMO system. Deep learning-based CSI feedback methods have been widely adopted recently owing to their superior performance. Despite the success, current approaches have not fully exploited the relationship between the characteristics of CSI data and the deep learning framework. In this paper, we propose a jigsaw puzzles aided training strategy (JPTS) to enhance the deep learning-based Massive MIMO CSI feedback approaches by maximizing mutual information between the original CSI and the compressed CSI. We apply JPTS on top of existing state-of-the-art methods. Experimental results show that by adopting this training strategy, the accuracy can be boosted by 12.07% and 7.01% on average in indoor and outdoor environments, respectively. The proposed method is ready to adopt to existing deep learning frameworks of Massive MIMO CSI feedback. Codes of JPTS are available on GitHub for use.
翻译:CSI反馈是大规模多投入多重产出(MIMO)技术的一个重要问题,因为反馈管理费用与亚通道数量和天线数量成比例,两者的规模均与MMIMO系统的规模成正比。由于成绩优异,最近广泛采用了深入学习的CSI反馈方法。尽管取得了成功,但目前的办法尚未充分利用CSI数据特点与深层学习框架之间的关系。在本文件中,我们建议采用一个拼图拼图辅助培训战略,通过最大限度地扩大最初的CSI与压缩的CSI之间的相互信息,加强基于深学习的MIMO CSI反馈方法。我们在现有最先进方法上应用了JSTS。实验结果表明,通过采用这一培训战略,可以在室内和室外环境中分别平均提高12.07%和7.01%的准确性。提议的方法已准备用于现有的大规模IMIM CSI反馈的深层次学习框架。在GitHubb可以使用JSTS的代码。