Robotic shepherding is a bio-inspired approach to autonomously guiding a swarm of agents towards a desired location. The research area has earned increasing research interest recently due to the efficacy of controlling a large number of agents in a swarm (sheep) using a smaller number of actuators (sheepdogs). However, shepherding a highly dispersed swarm in an obstacle-cluttered environment remains challenging for existing methods. To improve the efficacy of shepherding in complex environments with obstacles and dispersed sheep, this paper proposes a planning-assisted context-sensitive autonomous shepherding framework with collision avoidance abilities. The proposed approach models the swarm shepherding problem as a single Travelling Salesperson Problem (TSP), with two sheepdogs\textquoteright\ modes: no-interaction and interaction. An adaptive switching approach is integrated into the framework to guide real-time path planning for avoiding collisions with static and dynamic obstacles; the latter representing moving sheep swarms. We then propose an overarching hierarchical mission planning system, which is made of three sub-systems: a clustering approach to group and distinguish sheep sub-swarms, an Ant Colony Optimisation algorithm as a TSP solver for determining the optimal herding sequence of the sub-swarms, and an online path planner for calculating optimal paths for both sheepdogs and sheep. The experiments on various environments, both with and without obstacles, objectively demonstrate the effectiveness of the proposed shepherding framework and planning approaches.
翻译:机械式牧羊是一种自发引导大批物剂走向理想地点的生物激励方法。研究领域最近由于使用较少的促动器(羊犬)在群(羊羊)中有效控制大批物剂而赢得了越来越多的研究兴趣。然而,在障碍和杂乱的环境中放牧高度分散的群体对于现有方法来说仍然具有挑战性。为了提高在有障碍和散羊的复杂环境中牧羊的功效,本文件提出一个规划辅助的、对背景敏感的自主牧羊框架,并具有避免碰撞的能力。拟议的方法模型将羊群牧羊问题作为单一旅行推销员问题(TSP),同时使用两种绵羊群/ text couteright\ 模式:不相互作用和互动。适应性转换方法被纳入框架,以指导实时路径规划,避免与静态和动态障碍碰撞;后者代表绵羊群迁移的群群。我们然后提议一个总体的等级任务规划系统,由三个子系统组成:组合方法,将羊群的次温床法方法,将羊群分辨区分成一个不易碎的分类方法,将羊分精选制,将羊群分解的羊群,将羊群和山羊群平式计划进行最佳的系统,确定最优化的路线,以最佳的排序方法,将羊床式方法,将羊床制成一个最佳的系统,用以确定最优制式的系统,并进行最佳的系统,确定最佳的路线,确定最佳的排序式式的路线,以最佳的路线,确定最佳的路线,以最佳的路线,并进行最佳的路线,并进行最佳的路线,进行最优化式式制制。</s>