In the last decade, recent successes in deep clustering majorly involved the mutual information (MI) as an unsupervised objective for training neural networks with increasing regularisations. While the quality of the regularisations have been largely discussed for improvements, little attention has been dedicated to the relevance of MI as a clustering objective. In this paper, we first highlight how the maximisation of MI does not lead to satisfying clusters. We identified the Kullback-Leibler divergence as the main reason of this behaviour. Hence, we generalise the mutual information by changing its core distance, introducing the generalised mutual information (GEMINI): a set of metrics for unsupervised neural network training. Unlike MI, some GEMINIs do not require regularisations when training. Some of these metrics are geometry-aware thanks to distances or kernels in the data space. Finally, we highlight that GEMINIs can automatically select a relevant number of clusters, a property that has been little studied in deep clustering context where the number of clusters is a priori unknown.
翻译:在过去十年中,最近深入分组的成功主要涉及相互信息(MI),这是对神经网络进行越来越正规化的培训的一个不受监督的目标。虽然对常规化的质量进行了广泛的讨论,但很少注意管理作为集群目标的相关性。在本文件中,我们首先强调最大化管理不会导致满意的集群。我们把库尔背-利比尔差异确定为这一行为的主要原因。因此,我们通过改变核心距离来概括相互信息,引入一般化的相互信息(GEMINI):一套用于非监督神经网络培训的计量标准。与MI不同的是,有些GEMINI在培训时不需要正规化。其中一些计量标准是因数据空间的距离或内核而具有几何测量特性的。最后,我们强调GEMINIs可以自动选择相关数目的集群,这种属性在深度组合中很少研究过,因为群集的数量是以前未知的。