Pseudorandom codes are error-correcting codes with the property that no efficient adversary can distinguish encodings from uniformly random strings. They were recently introduced by Christ and Gunn [CRYPTO 2024] for the purpose of watermarking the outputs of randomized algorithms, such as generative AI models. Several constructions of pseudorandom codes have since been proposed, but none of them are robust to error channels that depend on previously seen codewords. This stronger kind of robustness is referred to as adaptive robustness, and it is important for meaningful applications to watermarking. In this work, we show the following. - Adaptive robustness: We show that the pseudorandom codes of Christ and Gunn are adaptively robust, resolving a conjecture posed by Cohen, Hoover, and Schoenbach [S&P 2025]. - Ideal security: We define an ideal pseudorandom code as one which is indistinguishable from the ideal functionality, capturing both the pseudorandomness and robustness properties in one simple definition. We show that any adaptively robust pseudorandom code for single-bit messages can be bootstrapped to build an ideal pseudorandom code with linear information rate, under no additional assumptions. - CCA security: In the setting where the encoding key is made public, we define a CCA-secure pseudorandom code in analogy with CCA-secure encryption. We show that any adaptively robust public-key pseudorandom code for single-bit messages can be used to build a CCA-secure pseudorandom code with linear information rate, in the random oracle model. These results immediately imply stronger robustness guarantees for generative AI watermarking schemes, such as the practical quality-preserving image watermarks of Gunn, Zhao, and Song (2024).
翻译:暂无翻译