Unmanned aerial vehicles (UAVs), especially fixed-wing ones that withstand strong winds, have great potential for oceanic exploration and research. This paper studies a UAV-aided maritime data collection system with a fixed-wing UAV dispatched to collect data from marine buoys. We aim to minimize the UAV's energy consumption in completing the task by jointly optimizing the communication time scheduling among the buoys and the UAV's flight trajectory subject to wind effect, which is a non-convex problem and difficult to solve optimally. Existing techniques such as the successive convex approximation (SCA) method provide efficient sub-optimal solutions for collecting small/moderate data volume, whereas the solution heavily relies on the trajectory initialization and has not explicitly considered the wind effect, while the computational complexity and resulted trajectory complexity both become prohibitive for the task with large data volume. To this end, we propose a new cyclical trajectory design framework that can handle arbitrary data volume efficiently subject to wind effect. Specifically, the proposed UAV trajectory comprises multiple cyclical laps, each responsible for collecting only a subset of data and thereby significantly reducing the computational/trajectory complexity, which allows searching for better trajectory initialization that fits the buoys' topology and the wind. Numerical results show that the proposed cyclical scheme outperforms the benchmark one-flight-only scheme in general. Moreover, the optimized cyclical 8-shape trajectory can proactively exploit the wind and achieve lower energy consumption compared with the case without wind.


翻译:本文研究无人驾驶航空飞行器(无人驾驶航空飞行器),特别是承受强风的固定翼飞行器,具有巨大的海洋勘探和研究潜力。本论文研究无人驾驶航空辅助海事数据收集系统,该系统配备了固定翼无人驾驶航空飞行器,负责收集来自海洋浮标的数据。我们的目标是通过联合优化浮标和无人驾驶航空飞行器飞行轨迹之间的通信时间安排,尽量减少无人驾驶航空飞行器在完成任务过程中的能源消耗,以完成这项任务,为此共同优化浮标和无人驾驶航空飞行器飞行轨迹之间的通信时间安排,这是非凝油道问题,难以最佳地解决。现有技术,如连续的顺流近(SCA)方法,为收集小型/中度数据提供了高效的次最佳解决方案,而该解决方案在很大程度上依赖轨迹初始化和未明确考虑风效应。而计算复杂度和导致轨迹复杂度对于大数据量的任务来说,都变得令人难以接受。为此,我们提出了一个新的周期轨迹设计框架,可以处理任意数据量,从而产生风效应。拟议的无人驾驶轨道轨迹由多个周期航道组成,每个负责收集数据,每个只负责收集一组数据,从而大大降低一个相对的轨道周期轨迹,从而不比的轨道上轨道的轨道的轨道,从而可以使一个比较的轨道模型在计算/轨道上显示一个轨道上的轨道上,从而更精确地标的轨道上显示一种轨道,从而显示最佳的轨道的轨道上显示一种轨道的轨道上标,从而显示最佳的轨道,从而显示。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
47+阅读 · 2021年10月26日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关VIP内容
【Google-Marco Cuturi】最优传输,339页ppt,Optimal Transport
专知会员服务
47+阅读 · 2021年10月26日
强化学习最新教程,17页pdf
专知会员服务
171+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
6+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员