In the paper, we propose a class of accelerated zeroth-order and first-order momentum methods for both nonconvex mini-optimization and minimax-optimization. Specifically, we propose a new accelerated zeroth-order momentum (Acc-ZOM) method for black-box mini-optimization. Moreover, we prove that our Acc-ZOM method achieves a lower query complexity of $\tilde{O}(d^{3/4}\epsilon^{-3})$ for finding an $\epsilon$-stationary point, which improves the best known result by a factor of $O(d^{1/4})$ where $d$ denotes the variable dimension. In particular, the Acc-ZOM does not require large batches required in the existing zeroth-order stochastic algorithms. Meanwhile, we propose an accelerated \textbf{zeroth-order} momentum descent ascent (Acc-ZOMDA) method for \textbf{black-box} minimax-optimization, which obtains a query complexity of $\tilde{O}((d_1+d_2)^{3/4}\kappa_y^{4.5}\epsilon^{-3})$ without large batches for finding an $\epsilon$-stationary point, where $d_1$ and $d_2$ denote variable dimensions and $\kappa_y$ is condition number. Moreover, we propose an accelerated \textbf{first-order} momentum descent ascent (Acc-MDA) method for \textbf{white-box} minimax optimization, which has a gradient complexity of $\tilde{O}(\kappa_y^{4.5}\epsilon^{-3})$ without large batches for finding an $\epsilon$-stationary point. In particular, our Acc-MDA can obtain a lower gradient complexity of $\tilde{O}(\kappa_y^{2.5}\epsilon^{-3})$ with a batch size $O(\kappa_y^4)$. Extensive experimental results on the black-box adversarial attack to deep neural networks (DNNs) and poisoning attack demonstrate efficiency of our algorithms.
翻译:在纸张中, 我们提议了一种加速的零- 平流和一阶变异性动力度方法, 用于寻找 $\ epsilenty- modialimation 和 minimax- optialization。 具体地说, 我们提议了一个新的加速的零- ZOM 方法, 用于黑盒微调 {O} (d)\ 3/4\ ephil- silvatial districal lax modefil $ (cc- silon- demodition $), 用来改善已知的最佳效果, 以 $( d) mocial- demoditional_ a moditional_ laxil_ a mocial- detaxional lax lax a prestimocial_ modiaxal_ dal_ modiaxal_ a prestial_ lax_ a modia_ dímax_ a lax_ dal_ dismoudal_ a moudal_ a moudal_ a modia_ demodia_ demodia_ dromoud_ d2) 我们 moud ta ta ta ta ta ta ta, 我们 lax_ d_ a lax_ a moud_ d_ d_ a moud_ a lax_ d_ a lax_ a moudal_ d_ a lax_ d_ d_ a moudal a moud ta ta ta ta ta ta ta moud moud moud mo mo la la la laxxxxxxxxxxxxxxxxxxxxxxxxx mo la la la la la la la la la la la la la la moudal la la la la la la mo la mo mo mo mo mo mo mo mo la mo mo mo la la la la la la la la la la la la la mo