Several solutions have been proposed in the literature to address the Unmanned Aerial Vehicles (UAVs) collision avoidance problem. Most of these solutions consider that the ground controller system (GCS) determines the path of a UAV before starting a particular mission at hand. Furthermore, these solutions expect the occurrence of collisions based only on the GPS localization of UAVs as well as via object-detecting sensors placed on board UAVs. The sensors' sensitivity to environmental disturbances and the UAVs' influence on their accuracy impact negatively the efficiency of these solutions. In this vein, this paper proposes a new energy and delay-aware physical collision avoidance solution for UAVs. The solution is dubbed EDC-UAV. The primary goal of EDC-UAV is to build inflight safe UAVs trajectories while minimizing the energy consumption and response time. We assume that each UAV is equipped with a global positioning system (GPS) sensor to identify its position. Moreover, we take into account the margin error of the GPS to provide the position of a given UAV. The location of each UAV is gathered by a cluster head, which is the UAV that has either the highest autonomy or the greatest computational capacity. The cluster head runs the EDC-UAV algorithm to control the rest of the UAVs, thus guaranteeing a collision-free mission and minimizing the energy consumption to achieve different purposes. The proper operation of our solution is validated through simulations. The obtained results demonstrate the efficiency of EDC-UAV in achieving its design goals.


翻译:文献中提出了解决无人驾驶航空飞行器避免碰撞问题的若干解决办法,其中多数解决办法认为地面控制系统(GCS)决定了无人驾驶飞行器在开始特定任务之前的路径;此外,这些解决办法预计只是根据无人驾驶飞行器的全球定位系统定位和通过置于无人驾驶飞行器上的物体探测传感器发生碰撞。传感器对环境扰动的敏感性和无人驾驶飞行器对其精确度的影响对这些解决办法的效率产生消极影响。在这方面,本文件建议为无人驾驶飞行器提出新的能源和延迟有形避免碰撞的解决办法。解决办法被称作EDC-UAV。埃DC-UAV的首要目标是在安全无人驾驶飞行器轨道上建立碰撞,同时尽量减少能源消耗和反应时间。我们假定每个无人驾驶飞行器都配备了全球定位系统传感器,以确定其地位。此外,我们考虑到全球定位系统的差值差差,以提供无人驾驶飞行器的位置。每个无人驾驶飞行器的所在地都是以最高水平的轨道,因此,通过AVAVA的计算结果将达到最高水平。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员