High covariate dimensionality is an increasingly occurrent phenomenon in model estimation. A common approach to handling high-dimensionality is regularisation, which requires sparsity of model parameters. However, sparsity may not always be supported by economic theory or easily verified in some empirical contexts; severe bias and misleading inference can occur. This paper introduces a grouped parameter estimator (GPE) that circumvents this problem by using a parameter clustering technique. The large sample properties of the GPE hold under fairly standard conditions including a compact parameter support that can be bounded away from zero. Monte Carlo simulations demonstrate the excellent performance of the GPE relative to competing estimators in terms of bias and size control. Lastly, an empirical application of the GPE to the estimation of price and income elasticities of demand for gasoline illustrates the practical utility of the GPE.
翻译:在模型估计中,高共变性是一个越来越常见的现象。处理高维的常见做法是常规化,这要求模型参数的宽度。然而,在某些经验背景中,不总是经济理论支持或容易核实的;可能会发生严重偏差和误导推论。本文件介绍一个分组参数估计器(GPE),通过使用参数群集技术绕过这一问题。GPE的大量样本特性在相当标准的条件下持有,包括可与零相隔绝的紧凑参数支持。蒙特卡洛模拟显示GPE相对于竞争性估计器在偏差和大小控制方面的出色表现。最后,GPE在估计汽油价格和收入弹性需求方面的实验应用显示了GPE的实际效用。