Monocular Depth Estimation (MDE) is performed to produce 3D information that can be used in downstream tasks such as those related to on-board perception for Autonomous Vehicles (AVs) or driver assistance. Therefore, a relevant arising question is whether the standard metrics for MDE assessment are a good indicator of the accuracy of future MDE-based driving-related perception tasks. We address this question in this paper. In particular, we take the task of 3D object detection on point clouds as a proxy of on-board perception. We train and test state-of-the-art 3D object detectors using 3D point clouds coming from MDE models. We confront the ranking of object detection results with the ranking given by the depth estimation metrics of the MDE models. We conclude that, indeed, MDE evaluation metrics give rise to a ranking of methods that reflects relatively well the 3D object detection results we may expect. Among the different metrics, the absolute relative (abs-rel) error seems to be the best for that purpose.
翻译:单心深度估计(MDE)是用来产生三维信息,可用于下游任务,例如与自动车辆或驾驶员协助的机载感知有关的下游任务,因此,出现的一个相关问题是,MDE评估的标准指标是否是未来以MDE为基础的驾驶感知任务的准确性的良好指标。我们在本文中讨论这一问题。我们尤其将点云3D物体探测任务作为机载感知的替代物。我们用MDE模型产生的3D点云来培训和测试最先进的3D物体探测器。我们用MDE模型的深度估计指标给物体探测结果的排名来看待物体探测结果的排名。我们的结论是,事实上,MDE评价指标产生了一种反映我们可能期望的3D物体探测结果相对较好的方法的等级。在不同的指标中,绝对相对(ab-rel)错误似乎是用于这一目的的最佳方法。