Causal mediation analysis with random interventions has become an area of significant interest for understanding time-varying effects with longitudinal and survival outcomes. To tackle causal and statistical challenges due to the complex longitudinal data structure with time-varying confounders, competing risks, and informative censoring, there exists a general desire to combine machine learning techniques and semiparametric theory. In this manuscript, we focus on targeted maximum likelihood estimation (TMLE) of longitudinal natural direct and indirect effects defined with random interventions. The proposed estimators are multiply robust, locally efficient, and directly estimate and update the conditional densities that factorize data likelihoods. We utilize the highly adaptive lasso (HAL) and projection representations to derive new estimators (HAL-EIC) of the efficient influence curves of longitudinal mediation problems and propose a fast one-step TMLE algorithm using HAL-EIC while preserving the asymptotic properties. The proposed method can be generalized for other longitudinal causal parameters that are smooth functions of data likelihoods, and thereby provides a novel and flexible statistical toolbox.
翻译:因纵向和存活情况下的时间变化效应而引起的因果中介分析做为重要研究领域。面对复杂的纵向数据结构、时间变化的混淆因素、竞争性风险以及信息性截尾等问题,结合机器学习技术和半参数理论进行分析是目前的共同追求。本文聚焦于利用经向目标极大似然估计法(TMLE)来估计基于随机干预的纵向自然直接效应和间接效应。所提出的估计方法具有良好的多样性、局部有效性、能直接估计和更新因子化数据似然函数,使用高度自适应套索(HAL)与投影表征来推导纵向中介问题的高效影响曲线估计方法(HAL-EIC)并提出快速的一步TMLE算法,同时保留渐进性质,该方法能为其他纵向因果参数提供柔性工具箱。