We present an alternating least squares type numerical optimization scheme to estimate conditionally-independent mixture models in $\mathbb{R}^n$, without parameterizing the distributions. Following the method of moments, we tackle an incomplete tensor decomposition problem to learn the mixing weights and componentwise means. Then we compute the cumulative distribution functions, higher moments and other statistics of the component distributions through linear solves. Crucially for computations in high dimensions, the steep costs associated with high-order tensors are evaded, via the development of efficient tensor-free operations. Numerical experiments demonstrate the competitive performance of the algorithm, and its applicability to many models and applications. Furthermore we provide theoretical analyses, establishing identifiability from low-order moments of the mixture and guaranteeing local linear convergence of the ALS algorithm.
翻译:我们提出了一种交替最小二乘优化方案,用于在$\mathbb{R}^n$中估计条件独立的混合模型,而无需参数化分布。遵循矩法,我们通过处理一个不完整的张量分解问题来学习混合权重和组分均值。然后,通过线性求解计算组分分布的累积分布函数、高阶矩和其他统计量,且为在高维情况下的计算开销,通过开发高效的无张量操作来避免高阶张量的陡峭成本。数值实验表明了该算法的竞争性能以及其对许多模型和应用的适用性。此外,我们提供了理论分析,从混合的低阶矩中建立了可识别性,并保证了ALS算法的局部线性收敛。