The SpMV kernel is characterized by high performance variation per input matrix and computing platform. While GPUs were considered State-of-the-Art for SpMV, with the emergence of advanced multicore CPUs and low-power FPGA accelerators, we need to revisit its performance and energy efficiency. This paper provides a high-level SpMV performance analysis based on structural features of matrices related to common bottlenecks of memory-bandwidth intensity, low ILP, load imbalance and memory latency overheads. Towards this, we create a wide artificial matrix dataset that spans these features and study the performance of different storage formats in nine modern HPC platforms; five CPUs, three GPUs and an FPGA. After validating our proposed methodology using real-world matrices, we analyze our extensive experimental results and draw key insights on the competitiveness of different target architectures for SpMV and the impact of each feature/bottleneck on its performance.


翻译:SpMV内核的特点是每个输入矩阵和计算平台的性能差异很大;虽然GPU被认为是对SpMV最先进的,但随着先进的多核心CPU和低功率的FPGA加速器的出现,我们需要重新审视其性能和能效。本文根据与记忆-带宽强度、低ILP、负载不平衡和记忆内存内存内存内存内滞量等常见瓶颈有关的矩阵结构特征,提供了高水平的SpMV性能分析。为此,我们创建了一个覆盖这些特征的大型人工矩阵数据集,并研究在9个现代HPC平台的不同储存格式的性能;5个CPU、3个GPU和1个FPGA的性能。在用现实世界矩阵验证了我们拟议的方法之后,我们分析了我们的广泛实验结果,并提出了关于SpMV的不同目标结构的竞争力以及每个特性/瓶颈对其性能的影响的关键见解。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2021年6月21日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2021年3月3日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
12+阅读 · 2021年6月21日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
13+阅读 · 2021年3月3日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
11+阅读 · 2018年1月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员