Implicit equilibrium models, i.e., deep neural networks (DNNs) defined by implicit equations, have been becoming more and more attractive recently. In this paper, we investigate one emerging question if model's equilibrium point can be regarded as the solution of an optimization problem. Specifically, we first decompose DNNs into a new class of unit layer that is differential of an implicit convex function while keeping its output unchanged. Then, the equilibrium model of the unit layer can be derived, named Optimization Induced Equilibrium Networks (OptEq), which can be easily extended to deep layers. The equilibrium point of OptEq can be theoretically connected to the solution of its corresponding convex optimization problem with explicit objectives. Based on this, we can flexibly introduce prior properties to the equilibrium points: 1) modifying the underlying convex problems explicitly so as to change the architectures of OptEq; and 2) merging the information into the fixed point iteration, which guarantees to choose the desired equilibrium when the fixed point set is non-singleton. This work establishes an important first step towards optimization guided design of deep models.
翻译:隐含平衡模型,即由隐含方程式定义的深神经网络(DNN),最近越来越具有吸引力。在本文件中,我们调查一个新出现的问题,即模型的平衡点能否被视为优化问题的解决方案。具体地说,我们首先将DNN分解成一个新的单元层类别,该类别分为隐含的二次曲线函数,同时保持其输出不变。然后,可以得出单位层的平衡模型,名为优化引导平衡网络(OptEq),该模型很容易扩展至深层。OptEq的平衡点在理论上可以与其相应的螺旋优化问题的解决方案相连接,并具有明确的目标。在此基础上,我们可以灵活地将先前的属性引入平衡点:1) 修改基本的二次曲线问题,以明确改变OptEq的结构;2) 将信息合并到固定的循环点,从而保证在固定点设定的固定点上选择理想的平衡点,从而保证在固定点设定的非正点时选择理想的平衡。这项工作确立了向深层模型的优化方向设计迈出的重要第一步。