Complex design problems are common in the scientific and industrial fields. In practice, objective functions or constraints of these problems often do not have explicit formulas, and can be estimated only at a set of sampling points through experiments or simulations. Such optimization problems are especially challenging when design parameters are high-dimensional due to the curse of dimensionality. In this work, we propose a data-informed deep optimization (DiDo) approach as follows: first, we use a deep neural network (DNN) classifier to learn the feasible region; second, we sample feasible points based on the DNN classifier for fitting of the objective function; finally, we find optimal points of the DNN-surrogate optimization problem by gradient descent. To demonstrate the effectiveness of our DiDo approach, we consider a practical design case in industry, in which our approach yields good solutions using limited size of training data. We further use a 100-dimension toy example to show the effectiveness of our model for higher dimensional problems. Our results indicate that the DiDo approach empowered by DNN is flexible and promising for solving general high-dimensional design problems in practice.
翻译:在科学和工业领域,复杂的设计问题很常见。在实践上,这些问题的客观功能或制约往往没有明确的公式,只能通过实验或模拟在一组取样点作出估计。当设计参数由于维度的诅咒而具有高度时,这种优化问题特别具有挑战性。在这项工作中,我们提出一个数据知情的深层优化(Dido)方法如下:首先,我们使用一个深神经网络分类(DNN)来学习可行的区域;第二,我们根据DNN分类法抽样可行的点,以适应客观功能;最后,我们找到DNNN-Surrogate优化问题的最佳点,通过梯度下降来发现。为了证明我们的DDIO方法的有效性,我们考虑在工业中采用一个实用的设计案例,我们的方法利用有限的培训数据产生良好的解决办法。我们进一步使用一个100倍的示例来显示我们模型在较高维度问题上的有效性。我们的结果表明,DNNN所增强的 DiDo方法在实际中解决一般的高维设计问题方面是灵活和有希望的。