The promotion of construction robots can solve the problem of human resource shortage and improve the quality of decoration. To help the construction robots obtain environmental information, we need to use 3D point cloud, which is widely used in robotics, autonomous driving, and so on. With a good understanding of environmental information, construction robots can work better. However, the dynamic changes of 3D point cloud data may bring difficulties for construction robots to understand environmental information, such as when construction robots renovate houses. The paper proposes a semantic segmentation method for point cloud based on meta-learning. The method includes a basic learning module and a meta-learning module. The basic learning module is responsible for learning data features and evaluating the model, while the meta-learning module is responsible for updating the parameters of the model and improving the model generalization ability. In our work, we pioneered the method of producing datasets for meta-learning in 3D scenes, as well as demonstrated that the Model-Agnostic Meta-Learning (MAML) algorithm can be applied to process 3D point cloud data. At the same time, experiments show that our method can allow the model to be quickly applied to new environments with a few samples. Our method has important applications.
翻译:推广建筑机器人可以解决人力资源短缺问题,提高装饰质量。 为了帮助建筑机器人获得环境信息, 我们需要使用3D点云, 3D点云广泛用于机器人、 自主驾驶等。 如果能很好地理解环境信息, 建筑机器人可以工作得更好。 然而, 3D点云数据的动态变化可能会给建筑机器人理解环境信息带来困难, 比如当建筑机器人翻新房屋时。 本文提出了基于元学习的点云分解法。 该方法包括一个基本的学习模块和一个元学习模块。 基础学习模块负责学习数据特征和评价模型, 而元学习模块负责更新模型参数, 并改进模型的概括化能力。 在我们的工作中, 我们先行开发了为3D场的元学习生成数据集的方法, 并且证明模型- 数学元值( MAML) 算法可以适用于进程 3D点云数据。 同时, 实验显示我们的方法可以让新的模型快速应用。