Rapid progress in 3D semantic segmentation is inseparable from the advances of deep network models, which highly rely on large-scale annotated data for training. To address the high cost and challenges of 3D point-level labeling, we present a method for semi-supervised point cloud semantic segmentation to adopt unlabeled point clouds in training to boost the model performance. Inspired by the recent contrastive loss in self-supervised tasks, we propose the guided point contrastive loss to enhance the feature representation and model generalization ability in semi-supervised setting. Semantic predictions on unlabeled point clouds serve as pseudo-label guidance in our loss to avoid negative pairs in the same category. Also, we design the confidence guidance to ensure high-quality feature learning. Besides, a category-balanced sampling strategy is proposed to collect positive and negative samples to mitigate the class imbalance problem. Extensive experiments on three datasets (ScanNet V2, S3DIS, and SemanticKITTI) show the effectiveness of our semi-supervised method to improve the prediction quality with unlabeled data.
翻译:3D 语义分解的快速进展与深网络模型的进展密不可分,而深网络模型高度依赖大规模附加说明的培训数据。为了应对3D点标记的高成本和挑战,我们提出了一个半监督云文语义分解方法,以在培训中采用未贴标签的点文分解云来提升模型性能。受最近自我监督任务的对比性损失的启发,我们提出了指导点对比性损失,以加强半监督环境中的特征代表性和模型概括化能力。关于未贴标签的云的语义预测作为我们损失的假标签指导,以避免同一类别中的负对子。此外,我们设计了信任性指南,以确保高质量的特征学习。此外,还提出了类别平衡的取样战略,以收集正负样本,减轻阶级不平衡问题。关于三个数据集(ScanNet V2, S3DIS, 和SmanticKITTI)的广泛实验显示我们用未贴标签数据改进预测质量的半监督方法的有效性。