Variational quantum Monte Carlo (QMC) is an ab-initio method for solving the electronic Schr\"odinger equation that is exact in principle, but limited by the flexibility of the available ansatzes in practice. The recently introduced deep QMC approach, specifically two deep-neural-network ansatzes PauliNet and FermiNet, allows variational QMC to reach the accuracy of diffusion QMC, but little is understood about the convergence behavior of such ansatzes. Here, we analyze how deep variational QMC approaches the fixed-node limit with increasing network size. First, we demonstrate that a deep neural network can overcome the limitations of a small basis set and reach the mean-field complete-basis-set limit. Moving to electron correlation, we then perform an extensive hyperparameter scan of a deep Jastrow factor for LiH and H$_4$ and find that variational energies at the fixed-node limit can be obtained with a sufficiently large network. Finally, we benchmark mean-field and many-body ansatzes on H$_2$O, increasing the fraction of recovered fixed-node correlation energy of single-determinant Slater--Jastrow-type ansatzes by half an order of magnitude compared to previous variational QMC results and demonstrate that a single-determinant Slater--Jastrow--backflow version of the ansatz overcomes the fixed-node limitations. This analysis helps understanding the superb accuracy of deep variational ansatzes in comparison to the traditional trial wavefunctions at the respective level of theory, and will guide future improvements of the neural network architectures in deep QMC.


翻译:Monte Carlo (QMC) 是解决电子Schr\'ddinger 方程式的AB-nitio方法, 原则上是准确的, 但由于实际操作中可用的肛门测量仪的灵活性而受到限制。 最近引入的深入的QMC 方法, 特别是两个深神经网络 Ansatzes PauliNet 和 FermiNet, 使得QMC 能够达到传播QMC 的准确度, 但对于这种肛门的趋同行为却知之甚少。 在这里, 我们分析了深变QMC 如何随着网络规模的扩大而接近固定节点的内向值限制。 首先, 我们证明深神经网络可以克服一个小基的局限性, 并达到平均场全裸设定的限。 转向电子关系, 我们随后对一个深色的Jastrow 因素进行广泛的超常分量扫描, 发现一个足够大的网络可以获取固定节点的变速极限 。 最后, 我们将内位和多位的内位内向内值内值 Q- Q- Q- mold adal or dealalalalalalal- dealalalalalalalalalalalalal- order order exal- exal- deal- demodeal- orupaldaldalal orizal orupal orizal ordal lab a.

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员