The Keller-Segel-Navier-Stokes system governs chemotaxis in liquid environments. This system is to be solved for the organism and chemoattractant densities and for the fluid velocity and pressure. It is known that if the total initial cell density mass is below $2\pi$ there exist globally defined generalised solutions, but what is less understood is whether there are blow-up solutions beyond such a threshold and its optimality. Motivated by this issue, a numerical blow-up scenario is investigated. Approximate solutions computed via a stabilised finite element method founded on a shock capturing technique are such that they satisfy \emph{a priori} bounds as well as lower and $L^1(\Omega)$ bounds for the cell and chemoattractant densities. In particular, this latter properties are essential in detecting numerical blow-up configurations, since the non-satisfaction of these two requirements might trigger numerical oscillations leading to non-realistic finite-time collapses into persistent Dirac-type measures. Our findings show that the existence threshold value $2\pi$ encountered for the cell density mass may not be optimal and hence it is conjectured that the critical threshold value $4\pi$ may be inherited from the fluid-free Keller-Segel equations. Additionally it is observed that the formation of singular points can be neglected if the fluid flow is intensified.
翻译:Keller-Segel- Navier- Stokes 系统管理液体环境中的化工税。 这个系统将针对有机体和色诱性密度以及流体速度和压力解决。 众所周知, 如果初始细胞密度总量低于2美元pi$, 则存在全球定义的通用解决方案, 但更不为人理解的是, 是否有超过这个阈值的打击解决方案及其最佳性。 基于这一问题, 将调查一个数字自由打击情景。 通过基于休克捕捉技术的固定定点元素方法计算出来的近似解决方案, 满足了\emph{ a sisteri} 的界限, 以及更低和 $L1 (\\\\ Omega) 的界限, 并且已知, 如果这两种要求的不满意度不满意度可能会引发数值的变异性变异性, 导致非现实性的定时崩溃, 形成持续Dirac 类型计量。 我们的发现, 最终的基值是, 基值值是 基值 值 值 值 和 基值 基值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值 值