We present a study of the standard plasma physics test, Landau damping, using the Particle-In-Cell (PIC) algorithm. The Landau damping phenomenon consists of the damping of small oscillations in plasmas without collisions. In the PIC method, a hybrid discretization is constructed with a grid of finitely supported basis functions to represent the electric, magnetic and/or gravitational fields, and a distribution of delta functions to represent the particle field. Approximations to the dispersion relation are found to be inadequate in accurately calculating values for the electric field frequency and damping rate when parameters of the physical system, such as the plasma frequency or thermal velocity, are varied. We present a full derivation and numerical solution for the dispersion relation, and verify the PETSC-PIC numerical solutions to the Vlasov-Poisson for a large range of wave numbers and charge densities.
翻译:摘要:本文利用粒子-网格方法研究了标准等离子物理测试,也就是Landau阻尼现象。Landau阻尼现象是等离子体中的小振荡在没有碰撞的情况下被耗散的现象。在粒子-网格方法中,一个杂化离散化方案被建立,网格由有限支撑函数组成,用于表示电、磁和/或重力场,而分布式的Δ函数则用于表示粒子场。当物理系统的参数(如等离子体频率或热速度)变化时,对色散关系的近似计算结果被发现不足以准确计算电场频率和阻尼率的值。本文提出了完整的色散关系的推导和数值解,并验证了利用PETSc-PIC数值方法对Vlasov-Poisson方程的求解结果,对于大范围的波数和电荷密度进行了研究。