Considerable unsupervised video object segmentation algorithms based on deep learning have the problem of substantive model parameters and computation, which significantly limits the application of the algorithm in practice. This paper proposes a video object segmentation network based on motion guidance, considerably reducing the number of model parameters and computation and improving the video object segmentation performance. The model comprises a dual-stream network, motion guidance module, and multi-scale progressive fusion module. Specifically, RGB images and optical flow estimation are fed into dual-stream network to extract object appearance features and motion features. Then, the motion guidance module extracts the semantic information from the motion features through local attention, which guides the appearance features to learn rich semantic information. Finally, the multi-scale progressive fusion module obtains the output features at each stage of the dual-stream network. It gradually integrates the deep features into the shallow ones yet improves the edge segmentation effect. In this paper, numerous evaluations are conducted on three standard datasets, and the experimental results prove the superior performance of the proposed method.


翻译:基于深层学习的大量未经监督的视频物体分离算法存在实质性模型参数和计算问题,这大大限制了算法的实际应用。本文提议基于运动指导的视频物体分离网络,大大减少模型参数的数量和计算,并改进视频物体分割性能。模型包括双流网络、运动指导模块和多尺度渐进式递化模块。具体地说,RGB图像和光学流估计被输入双流网络,以提取物体外观特征和运动特征。然后,运动指导模块通过当地关注从运动特征中提取语义信息,引导外观特征学习丰富的语义信息。最后,多尺度渐进式聚变模块在双流网络的每个阶段都获得了输出特征。该模型逐渐将深度特征融入浅层网络,同时改善边缘分化效应。在本文中,对三个标准数据集进行了大量评价,实验结果证明了拟议方法的优异性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Image Segmentation Using Deep Learning: A Survey
Arxiv
44+阅读 · 2020年1月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员