A partition $\mathcal{P}$ of $\mathbb{R}^d$ is called a $(k,\varepsilon)$-secluded partition if, for every $\vec{p} \in \mathbb{R}^d$, the ball $\overline{B}_{\infty}(\varepsilon, \vec{p})$ intersects at most $k$ members of $\mathcal{P}$. A goal in designing such secluded partitions is to minimize $k$ while making $\varepsilon$ as large as possible. This partition problem has connections to a diverse range of topics, including deterministic rounding schemes, pseudodeterminism, replicability, as well as Sperner/KKM-type results. In this work, we establish near-optimal relationships between $k$ and $\varepsilon$. We show that, for any bounded measure partitions and for any $d\geq 1$, it must be that $k\geq(1+2\varepsilon)^d$. Thus, when $k=k(d)$ is restricted to ${\rm poly}(d)$, it follows that $\varepsilon=\varepsilon(d)\in O\left(\frac{\ln d}{d}\right)$. This bound is tight up to log factors, as it is known that there exist secluded partitions with $k(d)=d+1$ and $\varepsilon(d)=\frac{1}{2d}$. We also provide new constructions of secluded partitions that work for a broad spectrum of $k(d)$ and $\varepsilon(d)$ parameters. Specifically, we prove that, for any $f:\mathbb{N}\rightarrow\mathbb{N}$, there is a secluded partition with $k(d)=(f(d)+1)^{\lceil\frac{d}{f(d)}\rceil}$ and $\varepsilon(d)=\frac{1}{2f(d)}$. These new partitions are optimal up to $O(\log d)$ factors for various choices of $k(d)$ and $\varepsilon(d)$. Based on the lower bound result, we establish a new neighborhood version of Sperner's lemma over hypercubes, which is of independent interest. In addition, we prove a no-free-lunch theorem about the limitations of rounding schemes in the context of pseudodeterministic/replicable algorithms.
翻译:----
一个集合$\mathcal{P}$称为一个$(k,\varepsilon)$孤立分割,如果对于每个$\vec{p} \in \mathbb{R}^d$,球$\overline{B}_{\infty}(\varepsilon, \vec{p})$仅与$\mathcal{P}$的至多$k$个成员相交。在设计这样的孤立分割时,我们的目标是尽量减小$k$,同时使$\varepsilon$尽可能大。这个分割问题与许多主题有联系,包括确定性舍入方案、伪确定性、可复制性以及Sperner/KKM类型的结果等。在这项工作中,我们建立了$k$和$\varepsilon$之间的近似最优关系。我们证明,对于任何有界测度分割和任何$d\geq 1$,必须有$k\geq(1+2\varepsilon)^d$。因此,当$k=k(d)$被限制在${\rm poly}(d)$时,我们得到$\varepsilon=\varepsilon(d)\in O\left(\frac{\ln d}{d}\right)$。这个界是在$log$因子以内是最紧的,因为已知存在的孤立分割,其中$k(d)=d+1$,$\varepsilon(d)=\frac{1}{2d}$。我们还提供了适用于广泛的$k(d)$和$\varepsilon(d)$参数的孤立分割的新构造。具体而言,我们证明,对于任何$f:\mathbb{N}\rightarrow\mathbb{N}$,都存在一个孤立分割,其中$k(d)=(f(d)+1)^{\lceil\frac{d}{f(d)}\rceil}$,$\varepsilon(d)=\frac{1}{2f(d)}$。这些新分割在各种选择的$k(d)$和$\varepsilon(d)$的情况下,严格上最优,除了$O(\log d)$因子。基于下界结果,我们建立了一个新的Sperner引理,适用于超立方体邻域,这是一个独立的有趣结果。此外,在伪确定性/可复制算法的背景下,我们还证明了关于舍入方案限制的免费午餐定理。