We implement stacked denoising autoencoders, a class of neural networks that are capable of learning powerful representations of high dimensional data. We describe stochastic gradient descent for unsupervised training of autoencoders, as well as a novel genetic algorithm based approach that makes use of gradient information. We analyze the performance of both optimization algorithms and also the representation learning ability of the autoencoder when it is trained on standard image classification datasets.
翻译:我们实施了堆叠式脱钩自动电解码器,这是一组神经网络,能够学习高维数据的强大表现。我们描述用于无人监督的自动电解码器培训的随机梯度下降,以及一种利用梯度信息的新型遗传算法方法。我们分析了优化算法的性能和自动电解码器在接受标准图像分类数据集培训时的代表性学习能力。