We detail how to use Newton's method for distortion-based curved $r$-adaption to a discrete high-order metric field while matching a target geometry. Specifically, we combine two terms: a distortion measuring the deviation from the target metric; and a penalty term measuring the deviation from the target boundary. For this combination, we consider four ingredients. First, to represent the metric field, we detail a log-Euclidean high-order metric interpolation on a curved (straight-edged) mesh. Second, for this metric interpolation, we detail the first and second derivatives in physical coordinates. Third, to represent the domain boundaries, we propose an implicit representation for 2D and 3D NURBS models. Fourth, for this implicit representation, we obtain the first and second derivatives. The derivatives of the metric interpolation and the implicit representation allow minimizing the objective function with Newton's method. For this second-order minimization, the resulting meshes simultaneously match the curved features of the target metric and boundary. Matching the metric and the geometry using second-order optimization is an unprecedented capability in curved (straight-edged) $r$-adaption. This capability will be critical in global and cavity-based curved (straight-edged) high-order mesh adaption.


翻译:我们详细阐述了如何使用牛顿方法实现基于畸变的曲线$r$-适应到离散高阶度量场,同时匹配目标几何形状。具体而言,我们将两个术语结合起来:一个是测量偏离目标度量的畸变;另一个是测量偏离目标边界的惩罚项。对于这种组合,我们考虑了四个因素。首先,为了表示度量场,我们详细说明了曲线(直边)网格上的对数欧几里得高阶度量插值。其次,在这种度量插值中,我们详细说明了物理坐标中的一阶和二阶导数。第三,在表示域边界方面,我们提出了一个2D和3D NURBS模型的隐式表示。第四,在这种隐式表示中,我们获得了一阶和二阶导数。度量插值和隐式表示的导数允许使用牛顿方法最小化目标函数。通过这个二阶最小化,生成的网格同时匹配目标度量和边界的曲面特征。在曲线(直边)高阶网格适应中,通过最小化度量和几何形状,具有二阶优化能力是前所未有的。这种能力将在全局和基于空腔的曲线(直边)高阶网格适应中发挥至关重要的作用。

0
下载
关闭预览

相关内容

【CVPR2022】弱监督语义分割的类重新激活图
专知会员服务
16+阅读 · 2022年3月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月10日
Arxiv
0+阅读 · 2023年5月9日
VIP会员
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员