Various studies have shown the advantages of using Machine Learning (ML) techniques for analog and digital IC design automation and optimization. Data scarcity is still an issue for electronic designs, while training highly accurate ML models. This work proposes generating and evaluating artificial data using generative adversarial networks (GANs) for circuit data to aid and improve the accuracy of ML models trained with a small training data set. The training data is obtained by various simulations in the Cadence Virtuoso, HSPICE, and Microcap design environment with TSMC 180nm and 22nm CMOS technology nodes. The artificial data is generated and tested for an appropriate set of analog and digital circuits. The experimental results show that the proposed artificial data generation significantly improves ML models and reduces the percentage error by more than 50\% of the original percentage error, which were previously trained with insufficient data. Furthermore, this research aims to contribute to the extensive application of AI/ML in the field of VLSI design and technology by relieving the training data availability-related challenges.


翻译:各种研究表明,在模拟和数字信息技术设计自动化和优化方面使用机器学习(ML)技术具有优势;数据稀缺仍然是电子设计的一个问题,同时培训高度精确的ML模型;这项工作提议利用电路数据的基因对抗网络(GANs)生成和评价人工数据,以帮助和提高利用小型培训数据集培训的ML模型的准确性;培训数据是通过在Cadence Virtuoso、HSPICE和Microcap设计环境中以TSMC 180nm和22nm CMOS技术节点进行的各种模拟获得的;人造数据是为一套适当的模拟和数字电路生成和测试的;实验结果显示,拟议的人工数据生成大大改进了ML模型,并将原百分误率减少了50多个百分点,而原先的错误是用不足的数据培训的;此外,这项研究的目的是通过减轻培训数据提供方面的挑战,促进在VLSI设计和技术领域广泛应用AI/MLM。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Data Augmentation for Text Classification
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员