The coefficients of the stochastic differential equations with Markovian switching (SDEwMS) additionally depend on a Markov chain and there is no notion of differentiating such functions with respect to the Markov chain. In particular, this implies that the It\^o-Taylor expansion for SDEwMS is not a straightforward extension of the It\^o-Taylor expansion for stochastic differential equations (SDEs). Further, higher-order numerical schemes for SDEwMS are not available in the literature, perhaps because of the absence of the It\^o-Taylor expansion. In this article, first, we overcome these challenges and derive the It\^o-Taylor expansion for SDEwMS, under some suitable regularity assumptions on the coefficients, by developing new techniques. Secondly, we demonstrate an application of our first result on the It\^o-Taylor expansion in the numerical approximations of SDEwMS. We derive an explicit scheme for SDEwMS using the It\^o-Taylor expansion and show that the strong rate of convergence of our scheme is equal to $\gamma\in\{n/2:n\in\mathbb{N}\}$ under some suitable Lipschitz-type conditions on the coefficients and their derivatives. It is worth mentioning that designing and analysis of the It\^o-Taylor expansion and the $\gamma\in\{n/2:n\in\mathbb{N}\}$-order scheme for SDEwMS become much more complex and involved due to the entangling of continuous dynamics and discrete events. Finally, our results coincide with the corresponding results on SDEs when the state of the Markov chain is a singleton set.
翻译:使用 Markovian 转换 (SDEwMS) 的Stochatic 差分方程式的系数还取决于 Markov 链条, 并且没有关于对 Markov 链条的这种功能加以区分的概念。 特别是, 这意味着 SDEwMS 的 It ⁇ o- Taylor 扩展不是 ltção- Taylor 扩展用于 SDEwMS 差分方程式的直径扩展。 此外, 文献中没有 SDEwMS 的更高阶级数字方案, 可能是因为没有 IT ⁇ o- Taylor 扩展 。 首先, 我们克服了这些挑战, 并开发了 SDEwov 链链链链中的Ito- Taylor 扩展功能, 通过开发新的技术, 以获得 SDEwmord- Taylormation 的 扩展功能。 我们用 IMLO_N\\ talphral_ MS 和 IMFildal- main 的 等值 等值 等值的 Slimalma_ temal_ tal_ talma_ tal_ tal_ tal_ tal_ tal_ tal_ tal_ tal_ tal_ tal_ tal_ tal_ tal_ tal_ tal_ talations) mas mas lax lax lax ma_ tal_ tal_ tal_ tal__ tal_ tal_ tal_ tal_ tal_ tal_ tald_ tal_ tald_ tald_ t et etal_ tal_ sal_ t etal________ tal___ tal_ tal_ tal_ tal_ tal_ tal__ tal_ taldaldaldal_ et et etaldaldaldaldaldaldaldaldaldaldaldaldaldald et et et et et et et et et et etd et etdaldal_ et et et et et et lad_