In this paper, we consider stochastic versions of three classical growth models given by ordinary differential equations (ODEs). Indeed we use stochastic versions of Von Bertalanffy, Gompertz, and Logistic differential equations as models. We assume that each stochastic differential equation (SDE) has some crucial parameters in the drift to be estimated and we use the Maximum Likelihood Estimator (MLE) to estimate them. For estimating the diffusion parameter, we use the MLE for two cases and the quadratic variation of the data for one of the SDEs. We apply the Akaike information criterion (AIC) to choose the best model for the simulated data. We consider that the AIC is a function of the drift parameter. We present a simulation study to validate our selection method. The proposed methodology could be applied to datasets with continuous and discrete observations, but also with highly sparse data. Indeed, we can use this method even in the extreme case where we have observed only one point for each path, under the condition that we observed a sufficient number of trajectories. For the last two cases, the data can be viewed as incomplete observations of a model with a tractable likelihood function; then, we propose a version of the Expectation Maximization (EM) algorithm to estimate these parameters. This type of datasets typically appears in fishery, for instance.


翻译:在本文中,我们考虑普通差异方程式(ODEs)给出的三个经典增长模型的随机版本。 事实上,我们使用 Von Bertalanffy、 Gompertz 和物流差异方程式的随机版本作为模型。 我们假设每个随机差异方程式(SDE)在漂移方面有一些关键参数需要估计, 我们使用最大相似度动画仪(MLE)来估计这些参数。 在估计扩散参数时, 我们使用MLE来估计两个案例, 以及SDEs的数据的二次变形。 我们使用Akaike信息标准(AIC)来选择模拟数据的最佳模型。 我们认为, AIC是漂移参数的函数。 我们提出模拟研究, 以验证我们的选择方法。 提议的方法可以用连续和离散的观测数据来应用于数据集, 但也使用非常稀少的数据。 事实上, 我们甚至可以使用这种方法来估计每个路径的极差点, 条件是我们观察了足够数量的模型的轨迹; 我们用Akaike信息标准来选择这个模型的模型的模型参数。 对于最后两个模型来说, 我们用的是, 这些模型的模型的模型的参数是模型的模型的模型的模型的模型的模型的模型的参数。 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员