Stochastic evolution equations describing the dynamics of systems under the influence of both deterministic and stochastic forces are prevalent in all fields of science. Yet, identifying these systems from sparse-in-time observations remains still a challenging endeavour. Existing approaches focus either on the temporal structure of the observations by relying on conditional expectations, discarding thereby information ingrained in the geometry of the system's invariant density; or employ geometric approximations of the invariant density, which are nevertheless restricted to systems with conservative forces. Here we propose a method that reconciles these two paradigms. We introduce a new data-driven path augmentation scheme that takes the local observation geometry into account. By employing non-parametric inference on the augmented paths, we can efficiently identify the deterministic driving forces of the underlying system for systems observed at low sampling rates.


翻译:描述在确定力和随机力影响下的系统动态的斯托孔进化方程式在所有科学领域都很普遍。然而,从零星的时空观测中查明这些系统仍然是一项挑战性的工作。现有的方法要么侧重于观测的时间结构,依靠有条件的预期,从而抛弃系统不变化密度几何学中固有的信息;要么采用不变化密度的几何近似值,但仍局限于有保守力的系统。我们在此提出一种调和这两种模式的方法。我们采用了一种新的数据驱动路径增强计划,将当地观测几何纳入考虑。在扩大的路径上采用非参数推论,我们可以有效地确定低采样率所观测系统的基本系统的确定力。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月8日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员