In this paper, we introduce a shallow (one-hidden-layer) physics-informed neural network for solving partial differential equations on static and evolving surfaces. For the static surface case, with the aid of level set function, the surface normal and mean curvature used in the surface differential expressions can be computed easily. So instead of imposing the normal extension constraints used in literature, we write the surface differential operators in the form of traditional Cartesian differential operators and use them in the loss function directly. We perform a series of performance study for the present methodology by solving Laplace-Beltrami equation and surface diffusion equation on complex static surfaces. With just a moderate number of neurons used in the hidden layer, we are able to attain satisfactory prediction results. Then we extend the present methodology to solve the advection-diffusion equation on an evolving surface with given velocity. To track the surface, we additionally introduce a prescribed hidden layer to enforce the topological structure of the surface and use the network to learn the homeomorphism between the surface and the prescribed topology. The proposed network structure is designed to track the surface and solve the equation simultaneously. Again, the numerical results show comparable accuracy as the static cases. As an application, we simulate the surfactant transport on the droplet surface under shear flow and obtain some physically plausible results.
翻译:在本文中, 我们引入了一个浅( 隐藏层) 物理知情神经网络, 以解决静态和进化表面的局部差异方程式。 对于静态表面案例, 借助水平设定功能的辅助作用, 可以很容易地计算出表层差异表达式中使用的表层常态和平均曲度。 因此, 我们不使用文献中使用的正常扩展限制, 而是以传统碳酸盐差异操作员的形式写出表层差异操作员, 并直接用于损失功能。 我们通过解决Laplace- Beltrami方程式和复杂静态表面的表面扩散方程式, 进行一系列当前方法的绩效研究。 在隐藏层中仅使用少量神经元, 我们就能取得令人满意的预测结果。 然后我们扩展当前方法, 用给定速度在不断演变的表面解析方程式上解析。 为了跟踪表层和指定表层表面表和表层表层之间的内形态形态变化学。 拟议的网络结构旨在跟踪表层表面和表面流下的表面和表面流下正态的精确度, 也同时展示了表面的精确性变化。 。 数字结果 显示我们在表面的表面的流中, 。