Today's architectural engineering and construction (AEC) software require a learning curve to generate a three-dimension building representation. This limits the ability to quickly validate the volumetric implications of an initial design idea communicated via a single sketch. Allowing designers to translate a single sketch to a 3D building will enable owners to instantly visualize 3D project information without the cognitive load required. If previous state-of-the-art (SOTA) data-driven methods for single view reconstruction (SVR) showed outstanding results in the reconstruction process from a single image or sketch, they lacked specific applications, analysis, and experiments in the AEC. Therefore, this research addresses this gap, introducing a deep learning method: Vitruvio. Vitruvio adapts Occupancy Network for SVR tasks on a specific building dataset (Manhattan 1K). This adaptation brings two main improvements. First, it accelerates the inference process by more than 26\% (from 0.5s to 0.37s). Second, it increases the reconstruction accuracy (measured by the Chamfer Distance) by 18\%. During this adaptation in the AEC domain, we evaluate the effect of the building orientation in the learning procedure since it constitutes an important design factor. While aligning all the buildings to a canonical pose improved the overall quantitative metrics, it did not capture fine-grain details in more complex building shapes (as shown in our qualitative analysis). Finally, Vitruvio outputs a 3D-printable building mesh with arbitrary topology and genus from a single perspective sketch, providing a step forward to allow owners and designers to communicate 3D information via a 2D, effective, intuitive, and universal communication medium: the sketch.
翻译:今天的建筑工程和建筑(AEC)软件要求有一个学习曲线,以产生三层建筑的建筑代表。 这限制了快速验证通过一幅草图传递的初步设计理念的体积影响的能力。 允许设计师将单一草图转换为三维建筑, 将使所有者能够立即将3D项目信息视觉化, 而不需要所需的认知负荷。 如果以前的SOTA(SOTA)数据驱动的单一视野重建(SVR)数据驱动方法从单一图像或图纸的角度显示重建进程的突出结果, 他们缺乏具体的应用、 分析和实验。 因此, 这项研究可以解决这一差距, 引入一个深层次的学习方法: Vitruvio。 Vitruvio 将SVR的任务的 Occancy 网络转换为3D 3D 建筑数据集(Mantan 1K) 。 这种调整可以带来两大改进。 首先,它加快了单一视野重建过程的26 ⁇ (从0.5到0.37s)。 其次, 它可以提高所有重建的精确度( Chamer Learm) 18 。 在A 的建筑中, 3 中, 我们通过一个重要方向的调整了一个新的结构中, 我们通过一个结构中, 显示了一个结构中, 我们从一个结构的深度分析, 向一个结构结构的深度的图像中, 我们评估了一种结构中的一种结构中的一种结构的自我分析。