Robust prediction of citywide traffic flows at different time periods plays a crucial role in intelligent transportation systems. While previous work has made great efforts to model spatio-temporal correlations, existing methods still suffer from two key limitations: i) Most models collectively predict all regions' flows without accounting for spatial heterogeneity, i.e., different regions may have skewed traffic flow distributions. ii) These models fail to capture the temporal heterogeneity induced by time-varying traffic patterns, as they typically model temporal correlations with a shared parameterized space for all time periods. To tackle these challenges, we propose a novel Spatio-Temporal Self-Supervised Learning (ST-SSL) traffic prediction framework which enhances the traffic pattern representations to be reflective of both spatial and temporal heterogeneity, with auxiliary self-supervised learning paradigms. Specifically, our ST-SSL is built over an integrated module with temporal and spatial convolutions for encoding the information across space and time. To achieve the adaptive spatio-temporal self-supervised learning, our ST-SSL first performs the adaptive augmentation over the traffic flow graph data at both attribute- and structure-levels. On top of the augmented traffic graph, two SSL auxiliary tasks are constructed to supplement the main traffic prediction task with spatial and temporal heterogeneity-aware augmentation. Experiments on four benchmark datasets demonstrate that ST-SSL consistently outperforms various state-of-the-art baselines. Since spatio-temporal heterogeneity widely exists in practical datasets, the proposed framework may also cast light on other spatial-temporal applications. Model implementation is available at https://github.com/Echo-Ji/ST-SSL.
翻译:对不同时段全市交通流量的强力预测在不同时段对智能交通系统起着关键作用。虽然以往的工作在模拟时空相关性方面做出了巨大努力,但现有方法仍受到两大限制:(1) 大多数模型在不考虑空间异质性的情况下集体预测所有区域的流量,即不同区域可能扭曲了交通流量分布。(2) 这些模型未能捕捉时间变化的交通模式引起的时间偏差,因为它们通常以所有时段的共享参数空间为模式,模拟时空相关关系。为了应对这些挑战,我们提出了一个新的Spatio-时空自高端学习(ST-SSL)流量预测框架,这一框架加强了交通模式的表达方式,反映了空间和时间异质性,而辅助的自我监督的学习模式。 具体地说,我们的ST-SSL是一个综合模块,有时间和空间变异端对不同时的信息进行编码。为了实现适应性空空空空空空基自上自校准基线的自我校准基线,我们Star-Star-SL(ST-SS-SL)在连续的轨道动态结构中首次进行数据调整。SAL-SAL-SL(SAL-SAL-SL)在SAL-SL(SAL-I-I-I-I-I-I-I-I-I)结构结构中,SAL-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I