The energy consumption of private households amounts to approximately 30% of the total global energy consumption, causing a large share of the CO2 emissions through energy production. An intelligent demand response via load shifting increases the energy efficiency of residential buildings by nudging residents to change their energy consumption behavior. This paper introduces an activity prediction-based framework for the utility-based context-aware multi-agent recommendation system that generates an activity shifting schedule for a 24-hour time horizon to either focus on CO2 emissions or energy cost savings. In particular, we design and implement an Activity Agent that uses hourly energy consumption data. It does not require further sensorial data or activity labels which reduces implementation costs and the need for extensive user input. Moreover, the system enhances the utility option of saving energy costs by saving CO2 emissions and provides the possibility to focus on both dimensions. The empirical results show that while setting the focus on CO2 emissions savings, the system provides an average of 12% of emissions savings and 7% of cost savings. When focusing on energy cost savings, 20% of energy costs and 6% of emissions savings are possible for the studied households in case of accepting all recommendations. Recommending an activity schedule, the system uses the same terms residents describe their domestic life. Therefore, recommendations can be more easily integrated into daily life supporting the acceptance of the system in a long-term perspective.


翻译:私人住户的能源消耗约占全球能源消耗总量的30%,导致通过能源生产产生的二氧化碳排放量占二氧化碳排放量的很大一部分。通过负载转换的明智需求反应,通过对居民进行裸露以改变其能源消耗行为,提高了住宅建筑的能源效率。本文件为基于公用环境的多试剂建议系统引入了一个基于活动预测的框架,该框架在24小时时间范围内产生了一个活动转移时间表,该时间表侧重于二氧化碳排放量或节能。特别是,我们设计和实施一个使用小时能源消耗数据的活动代理系统。它不需要通过降低执行成本和广泛用户投入需要的感官数据或活动标签来进一步降低住宅建筑的能源效率。此外,该系统通过节省二氧化碳排放量和集中关注这两个层面,增强了节省能源成本的公用事业选择。经验显示,该系统在侧重于二氧化碳排放量节约和节省7%的成本节约的同时,平均提供了12%的排放量节省和节省成本。当侧重于节省能源成本时,20%的能源成本节约和6%的排放量节省是研究家庭在接受所有建议时有可能接受所有建议的。此外,该系统可以通过节省能源费用的方法提高公用事业的选择,从而能够更方便地从长远的角度看待其生活。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2018年8月3日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员