Temporal and numerical expression understanding is of great importance in many downstream Natural Language Processing (NLP) and Information Retrieval (IR) tasks. However, much previous work covers only a few sub-types and focuses only on entity extraction, which severely limits the usability of identified mentions. In order for such entities to be useful in downstream scenarios, coverage and granularity of sub-types are important; and, even more so, providing resolution into concrete values that can be manipulated. Furthermore, most previous work addresses only a handful of languages. Here we describe a multi-lingual evaluation dataset - NTX - covering diverse temporal and numerical expressions across 14 languages and covering extraction, normalization, and resolution. Along with the dataset we provide a robust rule-based system as a strong baseline for comparisons against other models to be evaluated in this dataset. Data and code are available at \url{https://aka.ms/NTX}.
翻译:时态和数字表达式理解在许多下游的自然语言处理(NLP)和信息检索(IR)任务中非常重要。然而,以前的许多工作仅涵盖了一些子类型,并且仅关注实体抽取,这严重限制了已识别提及的可用性。为了使这样的实体在下游场景中有用,覆盖和子类型的细粒度是重要的;更重要的是提供具体值的分辨率,以便进行操作。此外,以前的大多数工作仅涉及少数几种语言。在这里,我们描述了一个多语言评估数据集-NTX,涵盖了14种语言中不同的时态和数字表达式,并涵盖了抽取、归一化和解析。除了数据集外,我们还提供了一个强大的基于规则的系统,作为与在该数据集中评估的其他模型进行比较的强大基准。数据和代码可在 \url{https://aka.ms/NTX} 上找到。