Most obstacle avoidance algorithms are only effective in specific environments, and they have low adaptability to some new environments. In this paper, we propose a trajectory learning (TL)-based obstacle avoidance algorithm, which can learn implicit obstacle avoidance mechanism from trajectories generated by general obstacle avoidance algorithms and achieves better adaptability. Specifically, we define a general data structure to describe the obstacle avoidance mechanism. Based on this structure, we transform the learning of the obstacle avoidance algorithm into a multiclass classification problem about the direction selection. Then, we design an artificial neural network (ANN) to fit multiclass classification function through supervised learning and finally obtain the obstacle avoidance mechanism that generates the observed trajectories. Our algorithm can obtain the obstacle avoidance mechanism similar to that demonstrated in the trajectories, and are adaptable to unseen environments. The automatic learning mechanism simplifies modification and debugging of obstacle avoidance algorithms in applications. Simulation results demonstrate that the proposed algorithm can learn obstacle avoidance strategy from trajectories and achieve better adaptability.
翻译:多数避免障碍的算法只有在特定环境中才有效,而且对一些新环境的适应性较低。 在本文中,我们建议了一种基于轨迹的学习(TL)避免障碍的算法,这种算法可以从一般避免障碍算法产生的轨迹中学习隐含的障碍避免机制,并实现更好的适应性。具体地说,我们定义了一种一般的数据结构来描述避免障碍的机制。根据这种结构,我们把对避免障碍算法的学习转化成关于选择方向的多级分类问题。然后,我们设计了一个人工神经网络(ANN),以适应多级分类功能,通过监督学习,最终获得产生所观察到的轨迹的避免障碍机制。我们的算法可以获得类似于在轨迹中显示的避免障碍机制,并适应于看不见的环境。自动学习机制简化了在应用中避免障碍的算法的修改和调试。模拟结果表明,拟议的算法可以从轨迹中学习避免障碍的战略,并实现更好的适应性。