Relying on deep supervised or self-supervised learning, previous methods for depth completion from paired single image and sparse depth data have achieved impressive performance in recent years. However, facing a new environment where the test data occurs online and differs from the training data in the RGB image content and depth sparsity, the trained model might suffer severe performance drop. To encourage the trained model to work well in such conditions, we expect it to be capable of adapting to the new environment continuously and effectively. To achieve this, we propose MetaComp. It utilizes the meta-learning technique to simulate adaptation policies during the training phase, and then adapts the model to new environments in a self-supervised manner in testing. Considering that the input is multi-modal data, it would be challenging to adapt a model to variations in two modalities simultaneously, due to significant differences in structure and form of the two modal data. Therefore, we further propose to disentangle the adaptation procedure in the basic meta-learning training into two steps, the first one focusing on the depth sparsity while the second attending to the image content. During testing, we take the same strategy to adapt the model online to new multi-modal data. Experimental results and comprehensive ablations show that our MetaComp is capable of adapting to the depth completion in a new environment effectively and robust to changes in different modalities.


翻译:借助深层监督或自我监督的学习,以往从配对单一图像和稀少的深度数据完成深度的方法,近年来取得了令人印象深刻的绩效。然而,面对一种新的环境,测试数据在网上出现,与RGB图像内容和深度宽度的培训数据不同,经过培训的模型可能严重性能下降。为了鼓励经过培训的模型在这种条件下运行良好,我们期望它能够持续和有效地适应新的环境。为了实现这一点,我们提议MetaComp。它利用元学习技术模拟培训阶段的适应政策,然后在测试中以自我监督的方式使模型适应新的环境。考虑到输入是多模式数据,由于两种模式数据的结构和形式差异很大,同时将模型适应两种模式的变化将具有挑战性。因此,我们进一步提议在基本的元学习培训中将适应程序分解为两个步骤,第一个步骤是侧重于深度渗透,第二个步骤是关注图像内容。在测试中,我们采取同样的战略,将模型是多模式的深度,在测试中将模型和模型的深度中有效地调整到新的多模式中,将模型的深度数据转化为新的模型。在测试中,在测试中,在测试中,将模型的深度中,将模型的模型的模型的深度数据在新的模型中将适应到新的多模式中,以新的结果中将有效的模型的深度中,以显示不同的环境。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员