The recent development of deep learning combined with compressed sensing enables fast reconstruction of undersampled MR images and has achieved state-of-the-art performance for Cartesian k-space trajectories. However, non-Cartesian trajectories such as the radial trajectory need to be transformed onto a Cartesian grid in each iteration of the network training, slowing down the training process and posing inconvenience and delay during training. Multiple iterations of nonuniform Fourier transform in the networks offset the deep learning advantage of fast inference. Current approaches typically either work on image-to-image networks or grid the non-Cartesian trajectories before the network training to avoid the repeated gridding process. However, the image-to-image networks cannot ensure the k-space data consistency in the reconstructed images and the pre-processing of non-Cartesian k-space leads to gridding errors which cannot be compensated by the network training. Inspired by the Transformer network to handle long-range dependencies in sequence transduction tasks, we propose to rearrange the radial spokes to sequential data based on the chronological order of acquisition and use the Transformer to predict unacquired radial spokes from acquired ones. We propose novel data augmentation methods to generate a large amount of training data from a limited number of subjects. The network can be generated to different anatomical structures. Experimental results show superior performance of the proposed framework compared to state-of-the-art deep neural networks.
翻译:最近开发的深层次学习加上压缩遥感,能够快速重建未加取样的MR图像,并实现了Cartesian k-space轨迹。然而,在网络培训之前,非Cartesian轨迹,如辐射轨迹,需要转换成Cartesian网格,在网络培训的每次迭代中,需要将光线轨轨迹等非Cartesian轨迹转换成Cartesian网格,减缓培训过程,造成不便和延误。网络中非统一的Fourier变换的多重迭代,抵消了快速推断的深层学习优势。目前的做法通常是在图像到图像网络网络或非Cartesian的深层轨迹图,以避免反复的电网格进程。然而,图像到图像网络的轨迹轨迹,无法确保重建图像和对非Cartesian k-space的预处理中K-空间导致错误变格,无法通过网络培训补偿这些错误。由变换网络网络网络来处理顺序转换任务的远程依赖性能。我们提议在网络中将图像转换为较高级的神经轨迹图状网络,我们提议将较精确的网络变换的网络,从变换的网络到不断变换的轨迹图图图图图图图图状结构,从大规模变换取数据到从大规模变换取数据序列数据到从大的变换取数据到从变换到不断变换数据序列变换数据序列数。