Augmenting algorithms with learned predictions is a promising approach for going beyond worst-case bounds. Dinitz, Im, Lavastida, Moseley, and Vassilvitskii~(2021) have demonstrated that a warm start with learned dual solutions can improve the time complexity of the Hungarian method for weighted perfect bipartite matching. We extend and improve their framework in a principled manner via \textit{discrete convex analysis} (DCA), a discrete analog of convex analysis. We show the usefulness of our DCA-based framework by applying it to weighted perfect bipartite matching, weighted matroid intersection, and discrete energy minimization for computer vision. Our DCA-based framework yields time complexity bounds that depend on the $\ell_\infty$-distance from a predicted solution to an optimal solution, which has two advantages relative to the previous $\ell_1$-distance-dependent bounds: time complexity bounds are smaller, and learning of predictions is more sample efficient. We also discuss whether to learn primal or dual solutions from the DCA perspective.


翻译:强化算法,加上有学识的预测,是超越最坏情况范围的一个很有希望的方法。 Dinitz、 Im、 Lavastida、 Moseley 和 Vassilvitskii~(2021) 已经证明,以有学识的双重解决方案为温暖的开端,可以提高匈牙利加权完美双方匹配方法的时间复杂性。我们以原则性的方式,通过“textit{discrete convex 分析” (DCA) 扩展并改进其框架,这是一种离散的共形分析的类比。我们以DCA为基础的框架非常有用,我们将其应用到加权完美的双边匹配、加权的类固醇交叉和离散能源最小化计算机视觉上。我们以DCA为基础的框架可以产生时间复杂性,从预测的解决方案到最佳解决方案需要$@ell_infty-距离,这比前一个$@ell_1美元-远依赖的界限有两个优势:时间复杂性的界限较小,而了解预测的样本效率更高。我们还讨论是否从DCA角度学习原始或双重解决方案。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月7日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员