Augmenting algorithms with learned predictions is a promising approach for going beyond worst-case bounds. Dinitz, Im, Lavastida, Moseley, and Vassilvitskii~(2021) have demonstrated that a warm start with learned dual solutions can improve the time complexity of the Hungarian method for weighted perfect bipartite matching. We extend and improve their framework in a principled manner via \textit{discrete convex analysis} (DCA), a discrete analog of convex analysis. We show the usefulness of our DCA-based framework by applying it to weighted perfect bipartite matching, weighted matroid intersection, and discrete energy minimization for computer vision. Our DCA-based framework yields time complexity bounds that depend on the $\ell_\infty$-distance from a predicted solution to an optimal solution, which has two advantages relative to the previous $\ell_1$-distance-dependent bounds: time complexity bounds are smaller, and learning of predictions is more sample efficient. We also discuss whether to learn primal or dual solutions from the DCA perspective.
翻译:强化算法,加上有学识的预测,是超越最坏情况范围的一个很有希望的方法。 Dinitz、 Im、 Lavastida、 Moseley 和 Vassilvitskii~(2021) 已经证明,以有学识的双重解决方案为温暖的开端,可以提高匈牙利加权完美双方匹配方法的时间复杂性。我们以原则性的方式,通过“textit{discrete convex 分析” (DCA) 扩展并改进其框架,这是一种离散的共形分析的类比。我们以DCA为基础的框架非常有用,我们将其应用到加权完美的双边匹配、加权的类固醇交叉和离散能源最小化计算机视觉上。我们以DCA为基础的框架可以产生时间复杂性,从预测的解决方案到最佳解决方案需要$@ell_infty-距离,这比前一个$@ell_1美元-远依赖的界限有两个优势:时间复杂性的界限较小,而了解预测的样本效率更高。我们还讨论是否从DCA角度学习原始或双重解决方案。