Graph convolutional network (GCN) based approaches have achieved significant progress for solving complex, graph-structured problems. GCNs incorporate the graph structure information and the node (or edge) features through message passing and computes 'deep' node representations. Despite significant progress in the field, designing GCN architectures for heterogeneous graphs still remains an open challenge. Due to the schema of a heterogeneous graph, useful information may reside multiple hops away. A key question is how to perform message passing to incorporate information of neighbors multiple hops away while avoiding the well-known over-smoothing problem in GCNs. To address this question, we propose our GCN framework 'Deep Heterogeneous Graph Convolutional Network (DHGCN)', which takes advantage of the schema of a heterogeneous graph and uses a hierarchical approach to effectively utilize information many hops away. It first computes representations of the target nodes based on their 'schema-derived ego-network' (SEN). It then links the nodes of the same type with various pre-defined metapaths and performs message passing along these links to compute final node representations. Our design choices naturally capture the way a heterogeneous graph is generated from the schema. The experimental results on real and synthetic datasets corroborate the design choice and illustrate the performance gains relative to competing alternatives.


翻译:以图形结构化的复杂问题解决方案(GCN)为基础的图形革命网络(GCN)方法在解决复杂、图形结构化问题方面取得了显著进展。GCN通过信息传递和计算“深”节点表达方式,将图形结构信息和节点(或边缘)特征纳入其中。尽管在实地取得了显著进展,但设计多元图形的GCN结构架构仍是一个开放的挑战。由于一个混杂图的形态,有用的信息可能包含多个跳跃。一个关键问题是如何执行传递信息,将邻居多次跳出的信息纳入其中,同时避免GCN中众所周知的过度移动问题。为了解决这一问题,我们建议GCN框架“深超遗传图动网络(DHGCN)”,该框架利用混杂图的图案,并使用分级方法有效利用许多跳离的信息。首先根据“schema-派自来网络”(SEN)对目标节点的表达方式进行整合。然后,将同一类型的节点与各种预先定义的代位问题联系起来,并将信息传递给人,并沿着这些相近的图像网络(DHGCN)传递信息,这是我们从最终的模型绘制结果。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
156+阅读 · 2020年5月26日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年4月29日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
3+阅读 · 2020年4月29日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
Arxiv
24+阅读 · 2018年10月24日
Top
微信扫码咨询专知VIP会员