Population diversity is crucial in evolutionary algorithms as it helps with global exploration and facilitates the use of crossover. Despite many runtime analyses showing advantages of population diversity, we have no clear picture of how diversity evolves over time. We study how population diversity of $(\mu+1)$ algorithms, measured by the sum of pairwise Hamming distances, evolves in a fitness-neutral environment. We give an exact formula for the drift of population diversity and show that it is driven towards an equilibrium state. Moreover, we bound the expected time for getting close to the equilibrium state. We find that these dynamics, including the location of the equilibrium, are unaffected by surprisingly many algorithmic choices. All unbiased mutation operators with the same expected number of bit flips have the same effect on the expected diversity. Many crossover operators have no effect at all, including all binary unbiased, respectful operators. We review crossover operators from the literature and identify crossovers that are neutral towards the evolution of diversity and crossovers that are not.


翻译:---- 分析种群多样性的平衡态 Translated abstract: 在进化算法中,种群多样性对于全局探索和交叉使用非常重要。尽管许多运行时分析显示种群多样性的优势,但我们对多样性如何随时间演变没有清晰的认识。本文研究了在健身中立的环境下,$(\mu+1)$算法的种群多样性(通过汉明距离的两两和测量)如何演化。我们给出了种群多样性漂移的精确公式,并表明其被推向平衡态。此外,我们限制了接近平衡状态的预期时间。我们发现,包括算法选择在内的这些动态,对平衡位置都没有影响。所有具有相同期望位翻转次数的无偏变异算子对预期多样性具有相同的影响。许多交叉算子根本没有影响,包括所有的二进制无偏尊重算子。我们回顾了文献中的交叉算子,并识别了对多样性进化中性的交叉和不中性的交叉。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年8月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年6月1日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年8月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员