Exemplar-free Class-incremental Learning (CIL) is a challenging problem because rehearsing data from previous phases is strictly prohibited, causing catastrophic forgetting of Deep Neural Networks (DNNs). In this paper, we present iVoro, a holistic framework for CIL, derived from computational geometry. We found Voronoi Diagram (VD), a classical model for space subdivision, is especially powerful for solving the CIL problem, because VD itself can be constructed favorably in an incremental manner -- the newly added sites (classes) will only affect the proximate classes, making the non-contiguous classes hardly forgettable. Further, in order to find a better set of centers for VD construction, we colligate DNN with VD using Power Diagram and show that the VD structure can be optimized by integrating local DNN models using a divide-and-conquer algorithm. Moreover, our VD construction is not restricted to the deep feature space, but is also applicable to multiple intermediate feature spaces, promoting VD to be multi-centered VD (CIVD) that efficiently captures multi-grained features from DNN. Importantly, iVoro is also capable of handling uncertainty-aware test-time Voronoi cell assignment and has exhibited high correlations between geometric uncertainty and predictive accuracy (up to ~0.9). Putting everything together, iVoro achieves up to 25.26%, 37.09%, and 33.21% improvements on CIFAR-100, TinyImageNet, and ImageNet-Subset, respectively, compared to the state-of-the-art non-exemplar CIL approaches. In conclusion, iVoro enables highly accurate, privacy-preserving, and geometrically interpretable CIL that is particularly useful when cross-phase data sharing is forbidden, e.g. in medical applications. Our code is available at https://machunwei.github.io/ivoro.
翻译:在本文中,我们展示了iVornoi,这是CIL的一个整体框架。我们发现Voronoi Diagram(VD)是空间亚形的经典模型,对于解决 CIL 问题特别有影响力,因为VD 本身可以以渐进的方式构建,新增加的网址(类)只会影响近端的等级,使得不相接的等级很难被遗忘。此外,为了找到一套更好的 VD 建设中心,我们用Power Diagram将DNE与VD连结起来。我们找到了Vrononoi Diagram(VD),这是用于空间分层的经典模型。此外,我们VD的构建并不局限于深层地貌空间,而且也适用于多个中间地貌空间,促进VD成为多端的 VD(CIVD), 直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直径直的内径直径直径直径直径直径直径直径直的内位直径直径直的内位数字直径直径直的内的内直径直直直直直直直直直直直直直直直径直径直直直直直直直直直直直直径直径直径直径直直直直直直直直直直直直直直直直直直直直直直直直直直距,在直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直直