We address the problem of discovering 3D parts for objects in unseen categories. Being able to learn the geometry prior of parts and transfer this prior to unseen categories pose fundamental challenges on data-driven shape segmentation approaches. Formulated as a contextual bandit problem, we propose a learning-based agglomerative clustering framework which learns a grouping policy to progressively group small part proposals into bigger ones in a bottom-up fashion. At the core of our approach is to restrict the local context for extracting part-level features, which encourages the generalizability to unseen categories. On the large-scale fine-grained 3D part dataset, PartNet, we demonstrate that our method can transfer knowledge of parts learned from 3 training categories to 21 unseen testing categories without seeing any annotated samples. Quantitative comparisons against four shape segmentation baselines shows that our approach achieve the state-of-the-art performance.
翻译:我们处理的是为不可见类别的物体发现 3D 部件的问题。 能够学习部件的几何前方和在不可见类别之前将其转移给不可见类别,对数据驱动的形状分割方法构成根本性挑战。 我们提出一个基于学习的聚合群框架,作为背景土匪问题,我们建议一个基于学习的聚合群框架,以自下而上的方式学习一个组合政策,将小部分提案逐步分组为大部分。 我们方法的核心是限制提取部分级特性的当地环境,这鼓励了对不可见类别的通用性。 关于大规模微小的 3D 部分数据集,我们证明我们的方法可以将从3个培训类别学到的部分知识转移到21个看不见的测试类别,而没有看到任何附加说明的样本。 与四个形状分割基线的定量比较表明,我们的方法达到了最先进的性能。