Interest in thermal to visible face recognition has grown significantly over the last decade due to advancements in thermal infrared cameras and analytics beyond the visible spectrum. Despite large discrepancies between thermal and visible spectra, existing approaches bridge domain gaps by either synthesizing visible faces from thermal faces or by learning the cross-spectrum image representations. These approaches typically work well with frontal facial imagery collected at varying ranges and expressions, but exhibit significantly reduced performance when matching thermal faces with varying poses to frontal visible faces. We propose a novel Domain and Pose Invariant Framework that simultaneously learns domain and pose invariant representations. Our proposed framework is composed of modified networks for extracting the most correlated intermediate representations from off-pose thermal and frontal visible face imagery, a sub-network to jointly bridge domain and pose gaps, and a joint-loss function comprised of cross-spectrum and pose-correction losses. We demonstrate efficacy and advantages of the proposed method by evaluating on three thermal-visible datasets: ARL Visible-to-Thermal Face, ARL Multimodal Face, and Tufts Face. Although DPIF focuses on learning to match off-pose thermal to frontal visible faces, we also show that DPIF enhances performance when matching frontal thermal face images to frontal visible face images.
翻译:过去十年来,热红外摄像头和可见光外光谱分析的进展显著,对热红外与可见光外表的感知认识的兴趣有了显著提高。尽管热光谱和可见光光谱之间存在巨大差异,但现有方法通过综合热面面部可见面孔或学习跨光谱图像表示方式,弥补了领域差距。这些方法通常与不同范围和表达方式收集的正面面部图像运作良好,但在将热面面与不同面部面部不同面部相匹配时,其性能明显下降。我们提议了一个新的Domain和Pose Inverserant框架,同时学习领域,并形成变化表情。我们提议的框架由改造的网络组成,以便从离地热面和前面图像中提取最相关的中间表示方式;一个子网络,以联合弥合区域面部和显示差距;一个联合损失功能,包括交叉面面部和面部图像,我们通过对三个热面面面面面面进行评审,展示拟议方法的功效和优势。我们提议的框架由修改的网络网络组成,以从离面面面部图像显示可见的图像。但DP面面面部则侧重于显示,同时显示可看见的图像,同时显示可见的图像的性性表现也显示。