We present high-order variational Lagrangian finite element methods for compressible fluids using a discrete energetic variational approach. Our spatial discretization is mass/momentum/energy conserving and entropy stable. Fully implicit time stepping is used for the temporal discretization, which allows for a much larger time step size for stability compared to explicit methods, especially for low-Mach number flows and/or on highly distorted meshes. Ample numerical results are presented to showcase the good performance of our proposed scheme.
翻译:我们采用离散强能变异方法对压缩液体采用高序变异拉格朗加式有限元素法。我们的空间分解是质量/运动/节能和酶稳定。时间分解使用完全隐含的时间间隔,与明确的方法相比,稳定所需的时间跨度要大得多,特别是低兆位数流动和(或)高度扭曲的<unk> 。我们提出了大量的数字结果,以展示我们拟议办法的良好表现。</s>