Understanding the algorithmic bias of \emph{stochastic gradient descent} (SGD) is one of the key challenges in modern machine learning and deep learning theory. Most of the existing works, however, focus on \emph{very small or even infinitesimal} learning rate regime, and fail to cover practical scenarios where the learning rate is \emph{moderate and annealing}. In this paper, we make an initial attempt to characterize the particular regularization effect of SGD in the moderate learning rate regime by studying its behavior for optimizing an overparameterized linear regression problem. In this case, SGD and GD are known to converge to the unique minimum-norm solution; however, with the moderate and annealing learning rate, we show that they exhibit different \emph{directional bias}: SGD converges along the large eigenvalue directions of the data matrix, while GD goes after the small eigenvalue directions. Furthermore, we show that such directional bias does matter when early stopping is adopted, where the SGD output is nearly optimal but the GD output is suboptimal. Finally, our theory explains several folk arts in practice used for SGD hyperparameter tuning, such as (1) linearly scaling the initial learning rate with batch size; and (2) overrunning SGD with high learning rate even when the loss stops decreasing.


翻译:理解 emph{ 中度和 annealing} (SGD) 的算法偏差是现代机器学习和深层次学习理论中的关键挑战之一。 然而,大多数现有作品都侧重于 emph{ 非常小甚至无限的学习率制度,而没有涵盖学习率为 emph{ medroate and analing} 的实用情景。 在本文中,我们首先试图通过研究SGD在优化过度分界线线性回归问题方面的行为来描述 SGD 在中度学习率制度中的特殊正规化效应。 在这种情况下, SGD和GD已知是接近最佳的最低限度的解决方案; 然而,随着中度和反射度学习率的提高,我们显示它们表现出不同的 emph{ 方向: SGD 与数据矩阵的大型电子价值方向相融合,而GDD则遵循小的精度方向。 此外,我们表明,在早期停止时,这种方向性偏向性偏向性偏向确实很重要,因为SGDD输出几乎是最佳的,但是GD和GD GD输出在初始水平上是次级级的, 当我们开始学习时, 的压级的压压压压压压后, 。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月20日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员