For performing robotic manipulation tasks, the core problem is determining suitable trajectories that fulfill the task requirements. Various approaches to compute such trajectories exist, being learning and optimization the main driving techniques. Our work builds on the learning-from-demonstration (LfD) paradigm, where an expert demonstrates motions, and the robot learns to imitate them. However, expert demonstrations are not sufficient to capture all sorts of task specifications, such as the timing to grasp an object. In this paper, we propose a new method that considers formal task specifications within LfD skills. Precisely, we leverage Signal Temporal Logic (STL), an expressive form of temporal properties of systems, to formulate task specifications and use black-box optimization (BBO) to adapt an LfD skill accordingly. We demonstrate our approach in simulation and on a real industrial setting using several tasks that showcase how our approach addresses the LfD limitations using STL and BBO.
翻译:对于执行机器人操纵任务,核心问题在于确定符合任务要求的适当轨迹。计算这种轨迹的各种方法存在,是学习和优化主要驱动技术。我们的工作基于从演示中学习的模式,即专家展示动作,机器人学习模仿动作。然而,专家演示不足以捕捉各种任务规格,例如掌握物体的时机。在本文中,我们提出一种新的方法,在LfD技能范围内考虑正式任务规格。准确地说,我们利用Signal Temal Lologic(STL),这是系统时间特性的一种直观形式,以制定任务规格,并使用黑盒优化(BBBO)来相应调整LfD的技能。我们在模拟和真实工业环境上展示了我们的方法,用STL和BBO展示我们的方法如何解决LfD限制。