We study optimal fidelity selection for a human operator servicing a queue of homogeneous tasks. The agent can service a task with a normal or high fidelity level, where fidelity refers to the degree of exactness and precision while servicing the task. Therefore, high fidelity servicing results in higher-quality service but leads to larger service times and increased operator tiredness. We treat the cognitive state of the human operator as a lumped parameter that captures psychological factors such as workload and fatigue. The service time distribution of the human operator depends on her cognitive dynamics and the fidelity level selected for servicing the task. Her cognitive dynamics evolve as a Markov chain in which the cognitive state increases with high probability whenever she is busy and decreases while resting. The tasks arrive according to a Poisson process and each task waiting in the queue loses its value at a fixed rate. We address the trade-off between high-quality service of the task and consequent loss in value of subsequent tasks using a Semi-Markov Decision Process (SMDP) framework. We numerically determine an optimal policy and the corresponding optimal value function. Finally, we establish structural properties of an optimal fidelity policy and provide conditions under which the optimal policy is a threshold-based policy.
翻译:我们研究为一队同质任务提供服务的人类操作员的最佳忠诚选择。 代理商可以以正常或高度忠诚水平服务任务, 其忠诚度是指在为任务提供服务时准确度和精确度。 因此, 高忠诚服务导致服务质量提高, 导致服务时间增加, 操作员疲劳程度增加。 我们将人类操作员的认知状态视为一个包罗式参数, 包含诸如工作量和疲劳等心理因素。 人类操作员的服务时间分布取决于她的认知动态和为任务服务而选择的忠诚程度。 她的认知动态发展成一个马可夫链, 在马可夫链中, 当她繁忙时, 认知状态会高概率增加, 且休息时会减少。 根据普瓦森进程完成的任务和排队的每项任务将失去其价值, 固定速度。 我们用一个半马尔科夫决定程序( SMDP) 框架来处理任务高质量服务之间的交易, 以及随后任务的价值损失。 我们用数字确定一个最佳政策和相应的最佳价值功能。 最后, 我们建立最佳忠诚政策的结构属性, 提供最佳政策下的最佳条件。