The emerging trends of Internet-of-Vehicles (IoV) demand centralized servers to collect/process sensitive data with limited computational resources on a single vehicle. Such centralizations of sensitive data demand practical privacy protections. One widely-applied paradigm, Differential Privacy, can provide strong guarantees over sensitive data by adding noises. However, directly applying DP for IoV incurs significant challenges for data utility and effective protection. We observe that the key issue about DP-enabled protection in IoV lies in how to synergistically combine DP with special characteristics of IoV, whose query sequences are usually formed as unbalanced batches due to frequent interactions between centralized servers and edge vehicles. To this end, we propose HUT, a new algorithm to enable High UTility for DP-enabled protection in IoV. Our key insight is to leverage the inherent characteristics in IoV: the unbalanced batches. Our key idea is to aggregate local batches and apply Order Constraints, so that information loss from DP protection can be mitigated. We evaluate the effectiveness of HUT against the state-of-the-art DP protection mechanisms. The results show that HUT can provide much lower information loss by 95.69\% and simultaneously enable strong mathematically-guaranteed protection over sensitive data.
翻译:中央服务器要求中央服务器收集/处理敏感数据,使用单一车辆的计算资源有限。敏感数据的这种集中化要求实际的隐私保护。一个广泛应用的范式“差异隐私”可以通过添加噪音为敏感数据提供强有力的保障。然而,直接应用IoV的DP对数据效用和有效保护提出了重大挑战。我们认为,IoV中DP带动的保护的关键问题在于如何将DP与IoV的特殊特征协同结合,后者的查询序列通常由于中央服务器和边缘车辆之间的频繁互动而形成不平衡的批次。我们为此建议HUT,这是一种新的算法,使DP带动的保护在IoV中具有高度的自用性。我们的主要见解是利用IoV的固有特征:不平衡的批次。我们的主要想法是将本地批量集中起来,并应用秩序限制,以便减少DP保护的信息损失。我们评估HUT相对于状态的强大DP保护机制的效力。结果显示,HUT能够通过稳定的DP-69号数据提供较低的数据。